Extensions 1→N→G→Q→1 with N=S3×C23 and Q=S3

Direct product G=N×Q with N=S3×C23 and Q=S3
dρLabelID
S32×C2348S3^2xC2^3288,1040

Semidirect products G=N:Q with N=S3×C23 and Q=S3
extensionφ:Q→Out NdρLabelID
(S3×C23)⋊1S3 = D6⋊S4φ: S3/C1S3 ⊆ Out S3×C23366(S3xC2^3):1S3288,857
(S3×C23)⋊2S3 = A4⋊D12φ: S3/C1S3 ⊆ Out S3×C23366+(S3xC2^3):2S3288,858
(S3×C23)⋊3S3 = C2×S3×S4φ: S3/C1S3 ⊆ Out S3×C23186+(S3xC2^3):3S3288,1028
(S3×C23)⋊4S3 = C624D4φ: S3/C3C2 ⊆ Out S3×C2348(S3xC2^3):4S3288,624
(S3×C23)⋊5S3 = C625D4φ: S3/C3C2 ⊆ Out S3×C2348(S3xC2^3):5S3288,625
(S3×C23)⋊6S3 = C22×D6⋊S3φ: S3/C3C2 ⊆ Out S3×C2396(S3xC2^3):6S3288,973
(S3×C23)⋊7S3 = C22×C3⋊D12φ: S3/C3C2 ⊆ Out S3×C2348(S3xC2^3):7S3288,974
(S3×C23)⋊8S3 = C2×S3×C3⋊D4φ: S3/C3C2 ⊆ Out S3×C2348(S3xC2^3):8S3288,976

Non-split extensions G=N.Q with N=S3×C23 and Q=S3
extensionφ:Q→Out NdρLabelID
(S3×C23).S3 = S3×A4⋊C4φ: S3/C1S3 ⊆ Out S3×C23366(S3xC2^3).S3288,856
(S3×C23).2S3 = C2×D6⋊Dic3φ: S3/C3C2 ⊆ Out S3×C2396(S3xC2^3).2S3288,608
(S3×C23).3S3 = S3×C6.D4φ: S3/C3C2 ⊆ Out S3×C2348(S3xC2^3).3S3288,616
(S3×C23).4S3 = C22×S3×Dic3φ: trivial image96(S3xC2^3).4S3288,969

׿
×
𝔽